
SQL Query Examples

Introduction
There are several facts you should be aware of when using the Polarion database, otherwise you may not get
correct or expected results from your queries:

Accessing the database from an external client requires that references to database tables include the
schema name, which is POLARION in our case. So if you want to search in the WORKITEM table, you need
to refer to it as POLARION.WORKITEM.

Accessing the database from Polarion requires that database tables be referenced without the schema name,
e.g. WORKITEM.

If you want to search in a baseline via an external client, you need to connect to the historical database and
reference tables, including schema name, so that the reference is composed of POLARION_B_ + revision
number. For example: POLARION_B_123.WORKITEM. The particular baseline must exist in Polarion before
you can search in it.

Joins
It is important to understand how the objects are identified in the database. For every object there are two columns:
C_PK and C_URI.

C_PK is the primary key, that also contains the information about the object version (revision)
C_URI is the object ID, that does not contain the information about the object version.

To perform join queries you need to follow rules, to ensure that the queries work well both when you search the
baseline and when you search the non-historical database.

Tables that represent Polarion objects (i.e. their names do not start with CF, REL, or STRUCT) must be
joined via the C_URI column, not by the C_PK column.
Tables that do not represent Polarion prototypes (i.e. their names do start with CF, REL, or STRUCT) must
always be joined by one C_PK column. Additional joins must be linked via the C_URI column.

Example:
Consider a test case work item that verifies a requirement. In Polarion data model, the link is an attribute of the test
case work item and it is stored in the test case work item. The link then only points to the requirement that is show
as the parent (outgoing) link on the test case detail. So for the SQL query to work correctly in the baselines, the test
case work item must join the STRUCT_WORKITEM_LINKEDWORKITEMS by the C_PK column, while the outgoing
relation to requirement must join via C_URI.

STRUCT_WORKITEM_LINKEDWORKITEMS.FK_URI_WORKITEM = REQUIREMENT.C_URI and
STRUCT_WORKITEM_LINKEDWORKITEMS.FK_P_WORKITEM = TESTCASE.C_PK

Table Join with column Example

REL_WORKITEM_USER_ASSIGNEE FK_WORKITEM Example: 4

REL_WORKITEM_CATEGORY_CATEGORIES FK_WORKITEM

REL_USER_WORKITEM_WATCHES FK_USER

REL_USER_WORKITEM_VOTES FK_USER

CF_WORKITEM FK_WORKITEM Example: 1

CF_TESTRUN FK_TESTRUN

STRUCT_* FK_P_* Example: 1

1. Requirements planned for "Release2" with implementing open defects
Queries all Work Items of type requirement in MyProject that have a target release value of Release2 and that are
implemented by some unresolved Work Item of type defect.

select
 WORKITEM.C_URI
from
 WORKITEM
 inner join PROJECT on WORKITEM.FK_URI_PROJECT = PROJECT.C_URI
 inner join CF_WORKITEM on CF_WORKITEM.FK_WORKITEM = WORKITEM.C_PK
where true
 and PROJECT.C_ID = 'myProject'
 and WORKITEM.C_TYPE = 'requirement'
 and CF_WORKITEM.C_NAME = 'targetRelease'
 and CF_WORKITEM.C_STRING_VALUE = 'Release2'
 and exists (
 select
 DEFECT.C_PK
 from
 WORKITEM DEFECT,
 STRUCT_WORKITEM_LINKEDWORKITEMS LINK
 where
 DEFECT.C_TYPE = 'defect' and
 LINK.C_ROLE = 'implements' and
 LINK.FK_URI_WORKITEM = WORKITEM.C_URI and
 LINK.FK_P_WORKITEM = DEFECT.C_PK and
 DEFECT.C_RESOLUTION IS NULL
)

2. Requirements with linked test cases that failed in week 20
Queries all Work Items of type requirement in MyProject that are tested by some Work Item of type testcase which
failed in the 20th week of year 2012.

select
 WORKITEM.C_URI
from
 WORKITEM
 inner join PROJECT on WORKITEM.FK_URI_PROJECT = PROJECT.C_URI
where true
 and PROJECT.C_ID = 'myProject'
 and WORKITEM.C_TYPE = 'requirement'
 and exists (
 select
 TESTCASE.C_PK
 from
 WORKITEM TESTCASE,
 TESTRUN TESTRUN,
 STRUCT_WORKITEM_LINKEDWORKITEMS LINK,
 STRUCT_TESTRUN_RECORDS TESTRECORD
 where
 LINK.FK_URI_WORKITEM = WORKITEM.C_URI AND
 LINK.FK_P_WORKITEM = TESTCASE.C_PK AND
 LINK.C_ROLE = 'tests' AND
 TESTCASE.C_TYPE = 'testcase' AND
 TESTRECORD.FK_URI_TESTCASE = TESTCASE.C_URI AND
 TESTRECORD.FK_P_TESTRUN = TESTRUN.C_PK AND
 TESTRECORD.C_RESULT = 'failed' AND
 TESTRECORD.C_EXECUTED > '2012-05-14 00:00:00' AND

 TESTRECORD.C_EXECUTED < '2012-05-20 00:00:00'
)

3. Sum of time spent for tasks planned in "Iteration108"
Returns a sum of Time Spent values for all tasks that are assigned to Time Point Iteration108.

Info: This example can be executed only via an external client!

SELECT
 SUM(TASK.C_TIMESPENT)
FROM
 POLARION.WORKITEM TASK,
 POLARION.PROJECT PROJECT,
 POLARION.TIMEPOINT TIMEPOINT
WHERE
 TASK.FK_URI_PROJECT = PROJECT.C_URI AND
 PROJECT.C_ID = 'MyProject' AND
 TASK.C_TYPE = 'task' AND
 TASK.FK_URI_TIMEPOINT = TIMEPOINT.C_URI AND
 TIMEPOINT.C_ID = 'Iteration108'

4. Tasks assigned to "rProject" with "must_have" severity
Returns all Work Items of type task in MyProject that are assigned to rProject and that have must_have severity.

select
 WORKITEM.C_URI
from
 WORKITEM
 inner join PROJECT on WORKITEM.FK_URI_PROJECT = PROJECT.C_URI
 inner join REL_WORKITEM_USER_ASSIGNEE on WORKITEM.C_PK = REL_WORKITEM_USER_ASSIGNEE.FK_WORKITEM
 inner join USER on REL_WORKITEM_USER_ASSIGNEE.FK_URI_USER = USER.C_URI
where true
 and PROJECT.C_ID = 'drivepilot'
 and WORKITEM.C_TYPE = 'task'
 and WORKITEM.C_SEVERITY = 'must_have'
 and USER.C_ID = 'rProject'

Note: the table "USER" was renamed for PostgreSQL to "T_USER", so please adjust this example query
accordingly, for running against PostgreSQL for Polarion. Use "T_USER", not "USER" when referring to the table.

5. Combining Lucene query with SQL query
Returns all Work Items of type requirement in Playground that has linked (role tests) at least one test case (type
testcase).

select WORKITEM.C_URI
from WORKITEM
inner join LUCENE_QUERY('WorkItem', 'project.id:playground AND type:requirement', 'id') REQUIREMENT
 on WORKITEM.C_PK=REQUIREMENT.C_PK
where true
and exists (
 select
 TEST.C_PK
 from
 WORKITEM TEST,
 STRUCT_WORKITEM_LINKEDWORKITEMS LINK

 where
 LINK.FK_WORKITEM = REQUIREMENT.C_PK and
 LINK.FK_P_WORKITEM = TEST.C_PK and
 LINK.C_ROLE = 'tests' and
 TEST.C_TYPE = 'testcase'
)

6. Using custom fields in SQL Query
Returns all Work Items of type testcase in playground project that are planned for sprint (custom field
plannedForSprint is true) and duration (custom field duration) of WI is between 1 - 2 hours

select WORKITEM.C_URI
from WORKITEM
inner join PROJECT on PROJECT.C_URI = WORKITEM.FK_URI_PROJECT
inner join CF_WORKITEM CF1 on CF1.FK_WORKITEM = WORKITEM.C_PK
inner join CF_WORKITEM CF2 on CF2.FK_WORKITEM = WORKITEM.C_PK
where true
and PROJECT.C_ID = 'drivepilot'
and WORKITEM.C_TYPE = 'testcase'
and CF1.C_NAME = 'plannedForSprint'
and CF1.C_BOOLEAN_VALUE IS TRUE
and CF2.C_NAME = 'duration'
and CF2.C_DURATIONTIME_VALUE BETWEEN 1 AND 2

7. Distinct values in SQL Query
Collect all System requirements from Drive Pilot project that are covered by some Test case with linked Issue.

Keyword group by was used instead of distinct keyword.

select WORKITEM.C_URI
from WORKITEM
inner join PROJECT on PROJECT.C_URI = WORKITEM.FK_URI_PROJECT
inner join STRUCT_WORKITEM_LINKEDWORKITEMS LINKTEST on LINKTEST.FK_URI_WORKITEM = WORKITEM.C_URI
inner join WORKITEM TEST on TEST.C_URI = LINKTEST.FK_URI_P_WORKITEM
inner join STRUCT_WORKITEM_LINKEDWORKITEMS LINKISSUE on LINKISSUE.FK_URI_WORKITEM = TEST.C_URI
inner join WORKITEM ISSUE on ISSUE.C_URI = LINKISSUE.FK_URI_P_WORKITEM
where true
and PROJECT.C_ID = 'drivepilot'
and WORKITEM.C_TYPE = 'systemRequirement'
AND LINKTEST.C_ROLE = 'verifies'
AND ISSUE.C_TYPE = 'issue'
GROUP BY WORKITEM.C_URI

8. SQL query using "Like" or "Similar to" with a regular expression
Collect all Work Items with Lucene in their Description

select item.C_URI
from WORKITEM item
where item.C_DESCRIPTION
like '%Lucene%'

